
Finding substrings 

BY Taariq Mowzer 



What are we doing? 

How many times does a string L appear in a string S. 

 

E.G How many times does AABA appear in ABABAABAABA. 

 

In this case twice: 

ABAB|AABA|ABA 

ABABAAB|AABA| 

Notice the overlap ABAB|AAB|A|ABA| 



Rabin-Karp and hashing 

How to hash a string S? 

Let p = 1000000007 and k = 3247683247 (some other big prime) 

Let f(char v) = the position v is in the alphabet e.g f(a) = 1, f(e) = 5. 

 

hash (‘adeb’) = f(‘a’)*k3 + f(‘d’)*k2 + f(‘e’)*k + f(‘b’) (mod p) 



What’s the point of hashing? 

If hash(P) ≠ hash(Q) then P ≠ Q 

 

That means we can check less cases. 

 

Notice that if hash(P) = hash(Q) does not mean P = Q, so you still have 
to check if P = Q. 



Rolling hash 

Suppose we’re hashing length n = 4. 

S = ‘abbaaccd’ 

hash(‘abba’) = 1k3 + 2k2 + 2k + 1                                              ALL mod p 

hash(‘bbaa’) =           2k3 + 2k2+1k +  1 

hash(‘baac’)  =                     2k3 + 1k2+1k + 3 
 

To go from one hash to another: Remove the first letter 
                                                           times k 
                                                           add the next letter  



Rabin-Karp 

Robin- Karp is using the rolling hash and comparing it to our original 
string to see if they have the same hash. 

Where n is length of L and m is length of S 

 

Average running time of O(n + m) 

Worst case: O(nm) 

e.g. L = ‘AAA’, S = ‘AAAAAAAAAAAAAAAAAAAAAAAAAH’  



How to deal with AAAAAAAAAAAAAAAAAH? 

Use KMP 



Knuth-Morris-Pratt 

How many times does a string L appear in a string S. 

 

We use pre-processing. 

When a mistake occurs we do not start from over but to the shortest 
prefix that ‘works’. 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD          

ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD         instead of  ABACABABACABAD  

          ABACABAD                                    ABACABAD 

 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Example 

L  = ABACABAD 

S = ABACABABACABAD 

 

ABACABABACABAD 

               ABACABAD 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[0] = 0 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[0] = 0 

ABACABAD                                                  M[1] = 0 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[0] = 0 

ABACABAD                                                  M[1] = 0 

ABACABAD                                                  M[2] = 0 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[0] = 0 

ABACABAD                                                  M[1] = 0 

ABACABAD                                                  M[2] = 0 

ABACABAD                                                  M[3] = 1 

 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[0] = 0 

ABACABAD                                                  M[1] = 0 

ABACABAD                                                  M[2] = 0 

ABACABAD                                                  M[3] = 1 

ABACABAD                                                  M[4] = 0 

 

 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[4] = 0 

ABACABAD                                                  M[5] = 1 

 

 

 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[4] = 0 

ABACABAD                                                  M[5] = 1 

ABACABAD                                                  M[6] = 2 

 

 

 

 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[4] = 0 

ABACABAD                                                  M[5] = 1 

ABACABAD                                                  M[6] = 2 

ABACABAD                                                  M[7] = 3 

 

 

 

 



Where to fall-back? 

M[i] is the length of the longest prefix that is also a suffix of L[:i], 

M[i] ≠ i 

L  = ABACABAD 

ABACABAD                                                  M[4] = 0 

ABACABAD                                                  M[5] = 1 

ABACABAD                                                  M[6] = 2 

ABACABAD                                                  M[7] = 3 

ABACABAD                                                  M[8] = 0 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

 

 

 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

ABABBABABAA                                          M[1] = 0 

 

 

 

 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

ABABBABABAA                                          M[1] = 0 

ABABBABABAA                                          M[2] = 1 

 

 

 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

ABABBABABAA                                          M[1] = 0 

ABABBABABAA                                          M[2] = 1 

ABABBABABAA                                          M[3] = 2 

 

 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

ABABBABABAA                                          M[1] = 0 

ABABBABABAA                                          M[2] = 1 

ABABBABABAA                                          M[3] = 2 

ABABBABABAA                                          M[4] = 0 

 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

ABABBABABAA                                          M[1] = 0 

ABABBABABAA                                          M[2] = 1 

ABABBABABAA                                          M[3] = 2 

ABABBABABAA                                          M[4] = 0 

ABABBABABAA                                          M[5] = 1 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

ABABBABABAA                                          M[1] = 0 

ABABBABABAA                                          M[2] = 1 

ABABBABABAA                                          M[3] = 2 

ABABBABABAA                                          M[4] = 0 

ABABBABABAA                                          M[5] = 1 

ABABBABABAA                                          M[6] = 2 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[0] = 0 

ABABBABABAA                                          M[1] = 0 

ABABBABABAA                                          M[2] = 1 

ABABBABABAA                                          M[3] = 2 

ABABBABABAA                                          M[4] = 0 

ABABBABABAA                                          M[5] = 1 

ABABBABABAA                                          M[6] = 2 

ABABBABABAA                                          M[7] = 3 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[5] = 1 

ABABBABABAA                                          M[6] = 2 

ABABBABABAA                                          M[7] = 3 

ABABBABABAA                                          M[8] = 4 

 

 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[5] = 1 

ABABBABABAA                                          M[6] = 2 

ABABBABABAA                                          M[7] = 3 

ABABBABABAA                                          M[8] = 4 

ABABBABABAA                                          M[9] = 3 

 

 

 

 

 



Where to fall-back? 

L  = ABABBABABAA 

ABABBABABAA                                          M[5] = 1 

ABABBABABAA                                          M[6] = 2 

ABABBABABAA                                          M[7] = 3 

ABABBABABAA                                          M[8] = 4 

ABABBABABAA                                          M[9] = 3 

ABABBABABAA                                          M[10] = 1 

 

 

 

 



How to implement? 

lenn = 0 

\\len is the longest prefix of L that currently matches up to S[i] 

for i in range(len(S)): 

 while (L[lenn] != S[i] and lenn > 0): 

  \\Change the start until it matches S[i] or is 0 

  lenn = M[lenn- 1] 

  \\Off by 1 errors will make you suicidal 

 if (L[lenn] == S[i]): 

  len++ 

 If (lenn == L.size()): 

  \\The entire L has been found in S 

  ans++ 

  lenn = M[lenn - 1] 

 

 



How to find M? 

You can do the O(n2) which isn’t too bad. 

There is a O(n) which is similar to the previous code . 



How to find M? 

M = [0, 0] 

lenn = 0 

for i in range(1, len(L)): 

 while (L[lenn] != L[i] and lenn > 0): 

  lenn = M[lenn- 1] 

 if (L[lenn] == L[i]): 

  lenn++ 

 M.append(lenn) 

 



Note: 

For some reason my code is a lot simpler than other sites. 

So maybe my code is slow or doesn’t work. 

 

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/ 

https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pra
tt_algorithm 

If you need code. 

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm


Time complexity of KMP 

O(n) preprocessing 

O(m) matching time 

O(n + m) total time 


